====== Jetson AGX Orin Development ====== ==== Download SDKmanager in Host(X86 PC) ==== https://developer.nvidia.com/sdk-manager\\ ==== Console mode flash command ==== Before JetPack 5.1.1\\ Jetson Orin module to be emulated Flashing command\\ Jetson AGX Orin 64GB sudo ./flash.sh jetson-agx-orin-devkit mmcblk0p1\\ Jetson AGX Orin 32GB sudo ./flash.sh jetson-agx-orin-devkit-as-jao-32gb mmcblk0p\\ Jetson Orin NX 16GB sudo ./flash.sh jetson-agx-orin-devkit-as-nx16gb mmcblk0p1\\ Jetson Orin NX 8GB sudo ./flash.sh jetson-agx-orin-devkit-as-nx8gb mmcblk0p1\\ Jetson Orin Nano 8GB* sudo ./flash.sh jetson-agx-orin-devkit-as-nano8gb mmcblk0p1\\ Jetson Orin Nano 4GB sudo ./flash.sh jetson-agx-orin-devkit-as-nano4gb mmcblk0p1\\ After JetPack 5.1.2\\ sudo ./flash.sh jetson-agx-orin-devkit internal\\ ==== Install Vscode ==== $ git clone https://github.com/JetsonHacksNano/installVSCode.git\\ $ cd installVSCode\\ $ ./installVSCode.sh\\ ./installVSCodeWithPython.sh\\ code Jetpack 5.x會有無法啟動的問題 安裝後執行以下程式碼即可啟用(參考來源) code --no-sandbox ==== Install Chromium ==== search ubuntu SW "chromium" ==== Install JetPACK ==== cat /etc/nv_tegra_release\\ sudo apt update\\ sudo apt dist-upgrade\\ sudo reboot\\ sudo apt install nvidia-jetpack\\ ==== Install JTOP ==== sudo apt install python3-pip\\ sudo pip3 install jetson-stats\\ sudo systemctl restart jtop.service\\ sudo jtop\\ jetson_release 命令显示NVIDIA Jetson的状态和所有信息\\ tegrastats 命令行查看各资源信息\\ minicom -D /dev/ttyACM0\\ ==== Setting CPU clock to maximum ==== Setting AGX ORIN development kit Power mode at the upper right corner MAXN 50W 30W 15W If you want to run CPU maximum frequency\\ $sudo jetson_clocks\\ Using Jetson Power GUI\\ https://developer.nvidia.com/deepstream-getting-started\\ https://docs.nvidia.com/metropolis/deepstream/dev-guide/text/DS_Quickstart.html#jetson-setup\\ ==== Deepstream ==== /opt/nvidia/deepstream/deepstream-6.3/samples\\ $ sudo apt install \ libssl1.1 \ libgstreamer1.0-0 \ gstreamer1.0-tools \ gstreamer1.0-plugins-good \ gstreamer1.0-plugins-bad \ gstreamer1.0-plugins-ugly \ gstreamer1.0-libav \ libgstreamer-plugins-base1.0-dev \ libgstrtspserver-1.0-0 \ libjansson4 \ libyaml-cpp-dev === 1. Clone the librdkafka repository from GitHub: === $ git clone https://github.com/edenhill/librdkafka.git\\ === 2. Configure and build the library: === $ cd librdkafka\\ $ git reset --hard 7101c2310341ab3f4675fc565f64f0967e135a6a\\ $ ./configure\\ $ make\\ $ sudo make install\\ === 3. https://catalog.ngc.nvidia.com/orgs/nvidia/resources/deepstream === Get deepstream-6.3_6.3.0-1_arm64.deb for Jetson not to download for x86\\ $ sudo apt-get install ./deepstream-6.3_6.3.0-1_arm64.deb\\ === 4. Copy the generated libraries to the deepstream directory: === $ sudo mkdir -p /opt/nvidia/deepstream/deepstream-6.3/lib\\ $ sudo cp /usr/local/lib/librdkafka* /opt/nvidia/deepstream/deepstream-6.3/lib\\ ==== Running deepstreaming demo ==== sudo deepstream-app -c /opt/nvidia/deepstream/deepstream-6.3/samples/configs/deepstream-app/source30_1080p_dec_infer-resnet_tiled_display_int8.txt sudo deepstream-app -c /opt/nvidia/deepstream/deepstream-6.3/samples/configs/deepstream-app/source30_1080p_dec_preprocess_infer-resnet_tiled_display_int8.txt sudo deepstream-app -c /opt/nvidia/deepstream/deepstream-6.3/samples/configs/deepstream-app/source4_1080p_dec_infer-resnet_tracker_sgie_tiled_display_int8.txt XXXX sudo deepstream-app -c /opt/nvidia/deepstream/deepstream-6.3/samples/configs/deepstream-app/source4_1080p_dec_infer-resnet_tracker_sgie_tiled_display_int8_gpu1.txt sudo deepstream-app -c /opt/nvidia/deepstream/deepstream-6.3/samples/configs/deepstream-app/source1_usb_dec_infer_resnet_int8.txt sudo deepstream-app -c /opt/nvidia/deepstream/deepstream-6.3/samples/configs/deepstream-app/source2_1080p_dec_infer-resnet_demux_int8.txt sudo deepstream-app -c /opt/nvidia/deepstream/deepstream-6.3/samples/configs/deepstream-app/source4_1080p_dec_infer-resnet_tracker_sgie_tiled_display_int8.yml sudo deepstream-app -c /opt/nvidia/deepstream/deepstream-6.3/samples/configs/deepstream-app/source30_1080p_dec_infer-resnet_tiled_display_int8.yml sudo deepstream-app -c /opt/nvidia/deepstream/deepstream-6.3/samples/configs/deepstream-app/source4_1080p_dec_preprocess_infer-resnet_preprocess_sgie_tiled_display_int8.txt sudo deepstream-app -c /opt/nvidia/deepstream/deepstream-6.3/samples/configs/deepstream-app/source2_dewarper_test.txt ==== CPU Stress Test ==== sudo apt update\\ sudo apt install cuda-toolkit-11-4\\ sudo apt install stress\\ sudo apt -y install pip\\ sudo apt -y install python3-pip\\ sudo -H pip install -U jetson-stats\\ compiled jetson-gpu-burn source code\\ git clone https://github.com/anseeto/jetson-gpu-burn.git\\ cd jetson-gpu-burn\\ make\\ Using stress to run CPU loading\\ Using gpu_burn to run GPU loading\\ running CPU:8 cores\\ $stress -c 8 &\\ running CPU:12 cores\\ $stress -c 12 &\\ running GPU maximum loading:\\ $./gpu_burn 1000\\